Recreational Math Books – Part II

In my previous post (see here) I mentioned some interesting puzzle books. In today’s post I will mention different type of recreational math books i.e., biographical books. Here are my top three books in this category. They are must-read books for anybody even remotely interested in mathematics.

There are about three mathematics : (1)  Andrew Wiles, whose determination to solve Fermat’s Last Theorem inspires future generations and gives a strong message that patience and focus are two of the most important assets that every mathematician should posses. (2) Paul Erdos, whose love for mathematics is so deep and prolific and (3) Srinivasa Ramanujan, whose story is different from any other mathematician ever.

1) Fermat’s Enigma: The Epic Quest to Solve the World’s Greatest Mathematical Problem

This is one of the first “recreational” books I read. It starts with the history of Fermat’s last theorem (FLT), discusses the life style of early mathematicians and moves on to talk about Andrew Wiles’s 8 year long journey proving FLT. Watch this BBC documentary for a quick overview of Andrew Wiles’s story.

2) The Man Who Loved Only Numbers: The Story of Paul Erdos and the Search for Mathematical Truth

Paul Erdos is one of the greatest and most prolific mathematicians ever. The title of my blog is inspired by one of his famous sayings “My Brain is Open”. I don’t want to reveal any details of this book. You will enjoy this book more if you read it without knowing anything about Paul Erdos. I should warn you that there are some really tempting open problems in this book. When I first read this book (during my PhD days) I spent almost one full semester reading papers related to Twin Prime Conjecture and other number-theoretic problems. I also wrote a paper titled “A generalization of Erdos’s proof of Bertrand-Chebyshev’s theorem”. Watch this documentary “N is a number” for a quick overview of Paul Erdos’s story.

3) The Man Who Knew Infinity: A Life of the Genius Ramanujan

This is a very dense book. I bought it five years back and only recently finished reading it. This books covers lots of “topics” : south indian life-style, Hardy’s life, Ramanujan’s proofs and his flawed proofs, his journey to work with Hardy, his health struggles etc. It is definitely worth-reading to know the details of Ramanujan’s passion for mathematics.

—————————————————————————————————————————————

Recreational Math Books – Part I

Most of us encounter math puzzles during high-school. If you are really obsessed with puzzles, actively searching and solving them, you will very soon run out of puzzles !! One day you will simply realize that you are not encountering any new puzzles. No more new puzzles. Poof. They are all gone. You feel like screaming “Give me a new puzzle“. This happened to me around the end of my undergrad days. During this phase of searching for puzzles, I encountered Graceful Tree Conjecture and realized that there are lots of long-standing open “puzzles”. I don’t scream anymore. Well… sometimes I do scream when my proofs collapse. But that’s a different kind of screaming.

Sometimes, I do try to create new puzzles. Most of the puzzles I create are either very trivial to solve (or) very hard and related to long-standing conjectures. Often it takes lots of effort and ingenuity to create a puzzle with right level of difficulty.

In today’s post, I want to point you to some of the basic puzzle books that everybody should read. So, the next time you see a kid screaming “Give me a new puzzle“, simply point him/her to these books. Hopefully they will stop screaming for sometime. If they comeback to you soon, point them to Graceful Tree Conjecture  :)

1) Mathematical Puzzles: A Connoisseur’s Collection by Peter Winkler

2) Mathematical Mind-Benders by Peter Winkler

3) The Art of Mathematics: Coffee Time in Memphis by Bela Bollobás

4) Combinatorial Problems and Exercises by Laszlo Lovasz

5) Algorithmic Puzzles by Anany Levitin and Maria Levitin

I will mention more recreational math books in part 2 of this blog post.